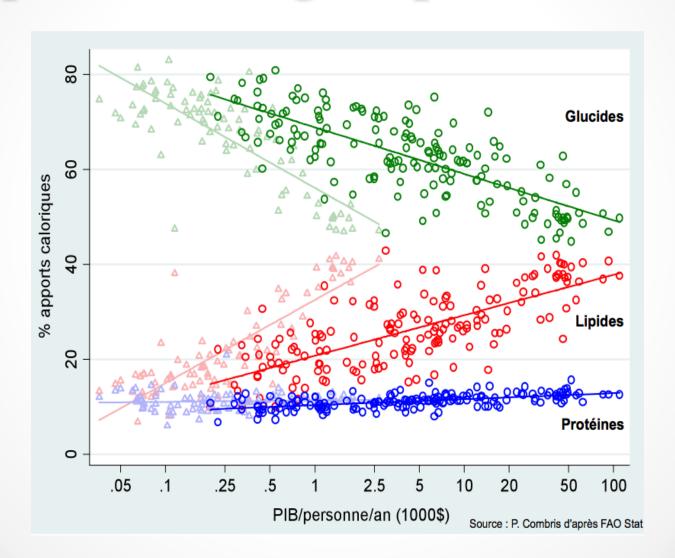
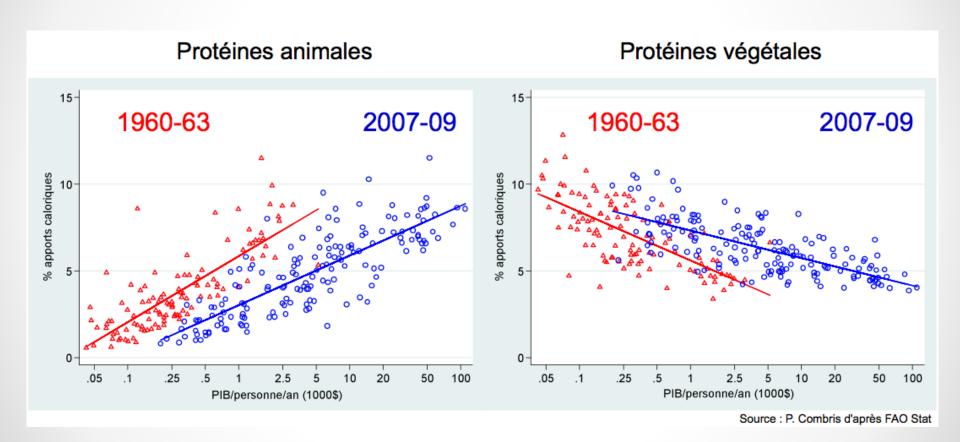
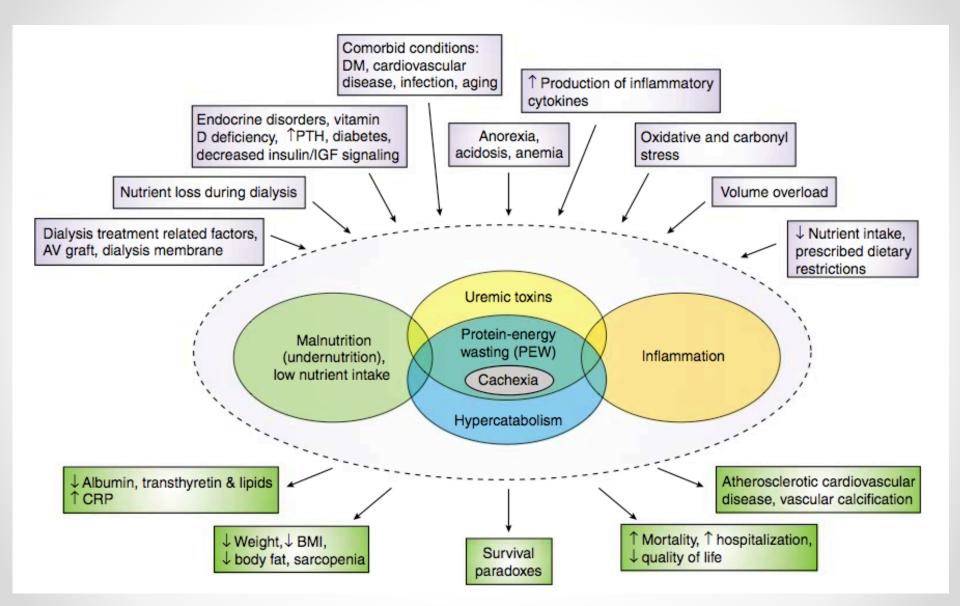
Nutrition et maladie rénale chronique: mythes et réalité


Pr. Denis FOUQUE Service de Néphrologie Lyon-Sud Université de Lyon - Claude Bernard

Apports Nutritionnels


Adultes en pays occidentaux:

- 1.3 1.4 g protéines/kg/j
- 35 40 kcal/kg/j
- 9 -12 g sel
- 1200 1800 mg phosphate
- 1000 mg calcium


Apports énergétiques 2007-09

Protéines animales et végétales

Dénutrition protéino-énergétique

Les protéines en excès entrainent une aggravation de la maladie rénale

caseine	45%	30%	20%
Proteinurie (mg/j)	186 ±23	248 ±32	141 ±42 *
S insulin	14.6 ±1.9	12.0 ±1.4	11.7 ±1.9 *

Expression dans le rein

			dano io ion	•
Lipides	caseine	45%	30%	20%
	SREBP1	2.2 ±0.2	2.2 ±0.2	1.0 ±0.2 *
inflom	TNF-alpha	3.5 ±0.6	2.7 ±0.4	1.1 ±0.3 *
mation	IL-6	2.1 ±0.3	2.0 ±0.2	1.0 ±0.1 *
	IV collagen	1.65 ±0.2	2.0 ±0.3	1.0 ±0.2 *
	TGF-beta	1.9 ±0.2	1.4 ±0.2	1.0 ±0.1 *

fibrose

Tovar-Palacio et al, Am J Physiol 2011 300:F263

Profil diététique et progression de la MRC

ESTABLISHED IN 1927 BY THE AMERICAN COLLEGE OF PHYSICIANS

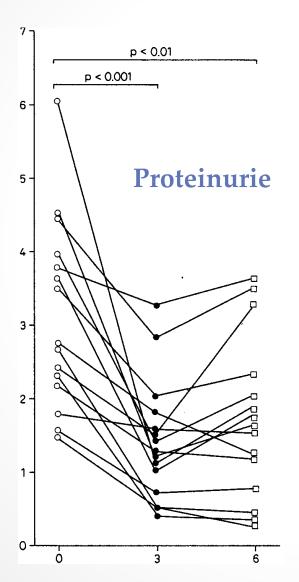
From: The Impact of Protein Intake on Renal Function Decline in Women with Normal Renal Function or Mild Renal Insufficiency

Ann Intern Med. 2003;138(6):460-467. doi:10.7326/0003-4819-138-6-200303180-00009

Table 3. Multivariate Linear Regression Results for Change in Estimated Glomerular Filtration Rate per 10-g Increase in Nondairy Animal, Dairy, or Vegetable Protein*

Protein Type	Change in Estimated GFR					
	Participants with Normal Renal Function (n = 1135)†	Participants with Mild Renal Insufficiency (n = 489)‡				
	mL/min per 1.73 m ²					
Nondairy animal Dairy Vegetable	0.09 (-1.08 to 1.26) 1.29 (-0.98 to 3.56) 1.83 (-1.25 to 4.98)	-1.21 (-2.34 to -0.33) -0.05 (-1.48 to 1.38) 1.03 (-2.08 to 4.14)				

Profil diététique et progression de la MRC


	Q1	Q2	Q3	Q4
Western				
Age and energy intake adjusted	1.00 (reference)	1.37 (0.98-1.93)	1.84 (1.29-2.64)	1.95 (1.27-2.97)
Multivariable	1.00 (reference)	1.22 (0.87-1.73)	1.57 (1.08-2.28)	1.48 (0.95-2.30)
Multivariable + analgesic medication use ^b	1.00 (reference)	1.22 (0.86-1.72)	1.52 (1.04-2.20)	1.40 (0.90-2.19)
Multivariable + high cholesterol or lipid-lowering drug	1.00 (reference)	1.23 (0.87-1.73)	1.57 (1.08-2.26)	1.46 (0.94-2.28)
Multivariable + diabetes duration	1.00 (reference)	1.22 (0.86-1.72)	1.58 (1.09-2.29)	1.46 (0.94-2.28)
Prudent Age and energy intake adjusted Multivariable ^a Multivariable + analgesic medication use ^b	1.00 (reference) 1.00 (reference) 1.00 (reference)	1.44 (1.05-1.97) 1.43 (1.04-1.98) 1.44 (1.04-1.98)	1.06 (0.76-1.48) 1.07 (0.76-1.51) 1.10 (0.78-1.56)	0.78 (0.53-1.13) 0.81 (0.55-1.19) 0.82 (0.56-1.21)
Multivariable + high cholesterol or lipid-lowering drug	1.00 (reference)	1.45 (1.05-2.00)	1.09 (0.77-1.54)	0.84 (0.57-1.23)
Multivariable + diabetes duration	1.00 (reference)	1.44 (1.04-1.98)	1.07 (0.76-1.51)	0.81 (0.55-1.19)
DASH-style				
Age and energy intake adjusted	1.00 (reference)	0.87 (0.64-1.18)	0.79 (0.58-1.09)	0.51 (0.36-0.72)
Multivariable ^a	1.00 (reference)	0.86 (0.63-1.17)	0.79 (0.57-1.09)	0.55 (0.38-0.80)
Multivariable + analgesic medication use ^b	1.00 (reference)	0.88 (0.65-1.21)	0.82 (0.60-1.13)	0.57 (0.39-0.83)
Multivariable + high cholesterol or lipid lowering drug	1.00 (reference)	0.86 (0.63-1.18)	0.79 (0.58-1.09)	0.55 (0.38-0.79)
Multivariable + diabetes duration	1.00 (reference)	0.87 (0.64-1.18)	0.79 (0.58-1.09)	0.55 (0.38-0.80)

Nurses health study, n= 3200, 1990-2000

Lin J et al. Am J Kidney Dis, 2011; 57: 245-254.

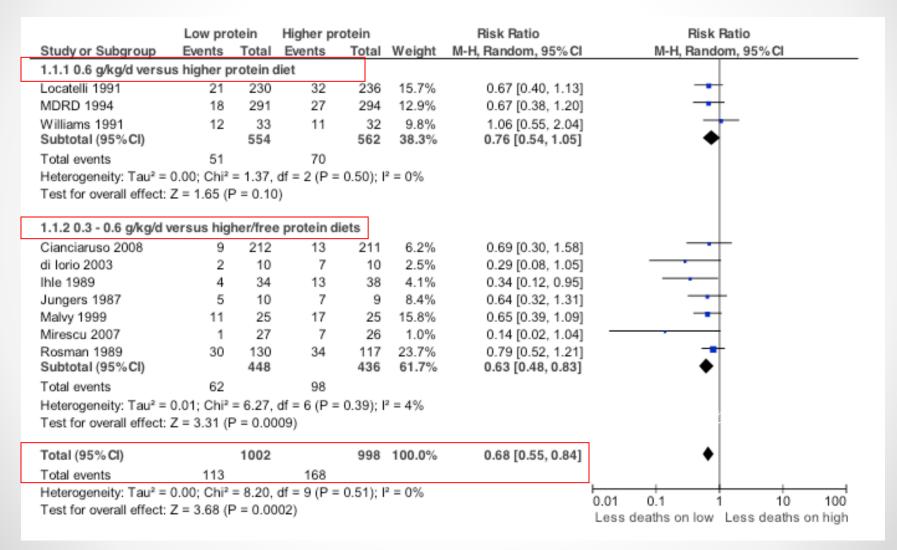
Bénéfices d'une réduction des protéines

Réduire la protéinurie

0.3 g prot/kg + ceto-analogs

Baisser l'urée sanguine

Après 3 mois à 0,3 g/kg/j + cétoanalogues


TABLE 1
Biochemical and physiologic indexes before and after 3 mo of a low-protein diet'

	Before	After
Serum creatinine (µmol/L)	463 ± 37	438 ± 62
GFR (mL/min)	13.2 ± 2.8	10.8 ± 2.0
Plasma urea (mmol/L)	24.3 ± 1.8	10.6 ± 1.7^{2}
Urinary urea (mmol/d)	171 ± 10	68 ± 5^2
Uric acid (µmol/L)	556 ± 31	405 ± 30^{-3}
Total calcium (mmol/L)	2.29 ± 0.07	2.38 ± 0.06
Phosphorus (mmol/L)	1.45 ± 0.22	1.34 ± 0.10
PTH (ng/L)	273 ± 139	172 ± 86
Arterial pH	7.39 ± 0.01	7.40 ± 0.01
Arterial bicarbonate (mmol/L)	24.2 ± 1.2	24.5 ± 1.3
Triacylglycerol (mmol/L)	2.7 ± 0.6	2.1 ± 0.4
Cholesterol (mmol/L)	6.3 ± 0.7	5.1 ± 0.4

Baisser l'urée urinaire

Excrétion urinaire d'urée (mmol/j) -15 15 45 75

Retarder le début des dialyses

Maintenir l'état nutritionnel

```
Apport minimal 0.46 g/kg/j (FAO/OMS, RDA)
+30% pour protéines variables = 0.60
+30% sécurité (niveau population) = 0.80
```

En MRC:

- Balances Azotées (Kopple)
- Flux de Leucine (Maroni, Fouque)
- Analyses métaboliques (Aparicio)

 (os, risque CV, acidose, protéinurie, insulinorésistance...)

Maintenir l'état nutritionnel en hémodialyse

Pas de différence selon l'apport prédialyse

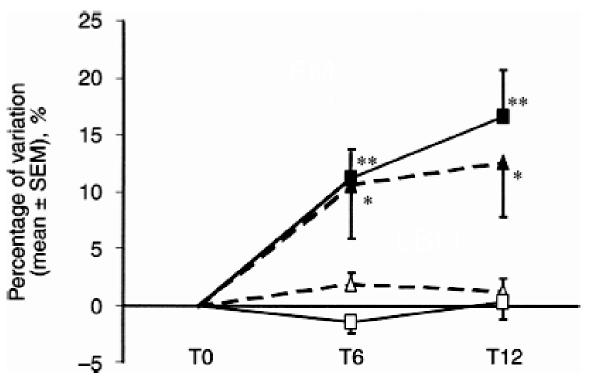


Fig. 2. Evolution of body composition (fat mass and lean body mass). A significant increase occurred in fat mass over the first year of hemodialysis in the two groups of patients (*P < 0.05; **P < 0.005). No change was observed in lean mass during the same period. Symbols are: (\blacksquare), control fat mass; (\square), control lean mass; (\triangle), SVLPD lean mass; and (\blacktriangle), SVLPD fat mass.

Diminuer l'inflammation

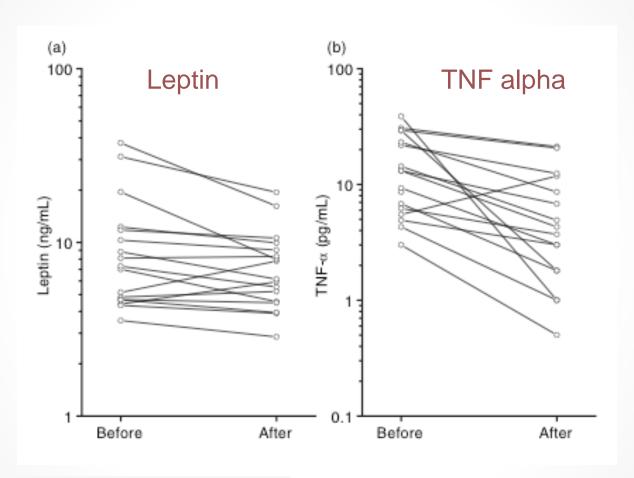
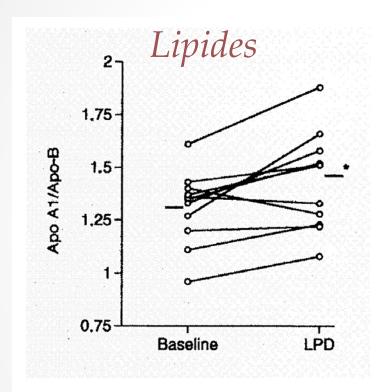



Fig. 1 (a) Plasma leptin and (b) tumour necrosis factor (TNF)-alpha levels before and after 16 weeks of a low protein diet.

1,05 à 0,68 g protein /kg/jour

Kozlowska et al, Nephrology 2004

Améliorer le profil lipidique

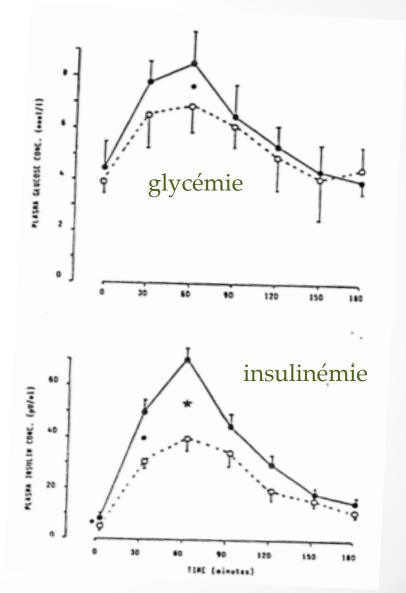
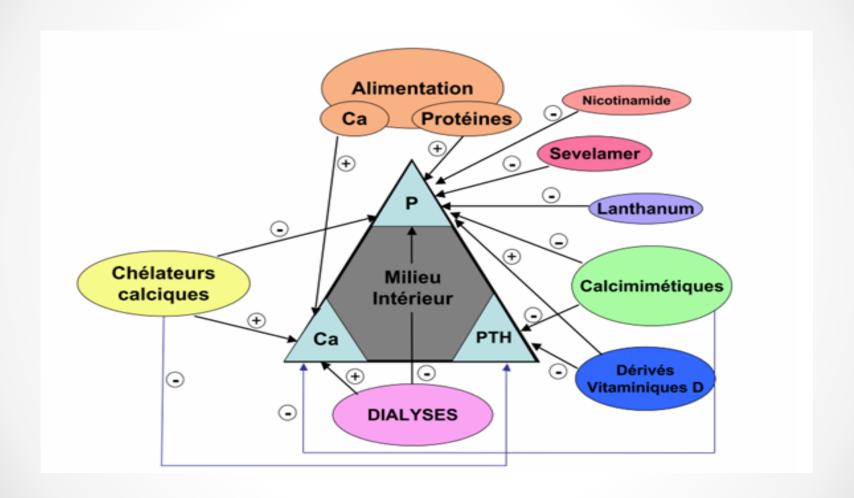

En réponse à la diminution des lipides saturés apportés par la viande

Fig. 1. The variation in the ratio of serum Apo-AI to Apo-B before (baseline) and after a 3-month low LPD period. The horizontal lines represent the mean value for each period (n = 11), *Significant increase from baseline; *p < 0.025.

Améliorer l'insulino-résistance

Amélioration de la glycémie et de l'insulinémie (après HGPO)


1 g/kg/j à 0.3 g/kg/j +céto pdt 4 mois

Gin et al. Metabolism 1987

Améliorer les anomalies phosphocalciques

Métabolisme du calcium et du phosphore en MRC

Réduire la charge de l'organisme en phosphore

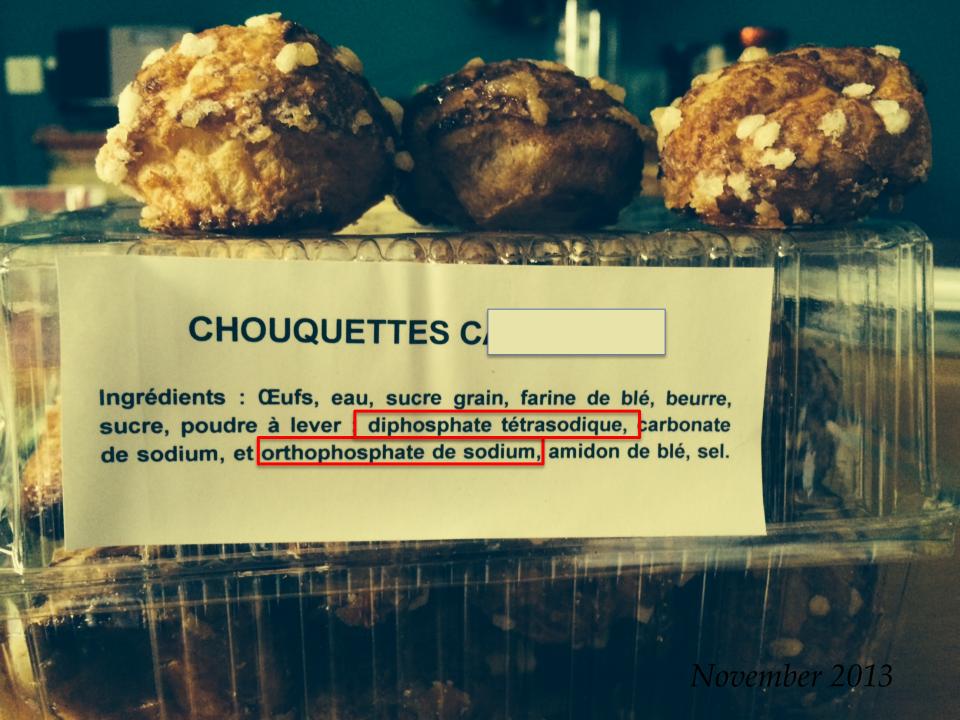
De 15 à 8 mg/kg/j

TABLE 1
Biochemical and physiologic indexes before and after 3 mo of a low-protein diet'

	Before	After
Serum creatinine (µmol/L)	463 ± 37	438 ± 62
GFR (mL/min)	13.2 ± 2.8	10.8 ± 2.0
Plasma urea (mmol/L)	24.3 ± 1.8	10.6 ± 1.7^{2}
Urinary urea (mmol/d)	171 ± 10	68 ± 5^{2}
Uric acid (µmol/L)	556 ± 31	405 ± 30^{3}
Total calcium (mmol/L)	2.29 ± 0.07	2.38 ± 0.06
Phosphorus (mmol/L)	1.45 ± 0.22	1.34 ± 0.10
PTH (ng/L)	273 ± 139	172 ± 86
Arterial pH	7.39 ± 0.01	7.40 ± 0.01
Arterial bicarbonate (mmol/L)	24.2 ± 1.2	24.5 ± 1.3
Triacylglycerol (mmol/L)	2.7 ± 0.6	2.1 ± 0.4
Cholesterol (mmol/L)	6.3 ± 0.7	5.1 ± 0.4

Apports classiques de phosphore: les fromages

Marché de Sallanches: difficile de résister...


Apports masqués de phosphore

Saucisses et phosphore

aliment	apports par portion	%apports par portion	146 mg à 12 mg par por	tion d	e 55g
Salami de dinde cuit (portion : 55g)	146mg	241%	0 01 1		O
Saucisson de foie (portion : 55g)	127mg	<u>18</u> %			
Jambon de dinde (portion : 55g)	126mg	<u>18</u> %			
Saucisse de dinde (portion : 55g)	111mg	<u>16%</u>	Salami sec (portion: 30g)	69mg	<u>1</u> 0%
Pâté de foie (portion : 55g)	110mg	<u>16%</u>	Saucisse fumée (porc et boeuf) (portion : 55g)	67mg	<u>1</u> 0%
Chipolata (portion: 55g)	101mg	14%	Roulé de poulet (portion : 55g)	67mg	<u>1</u> 0%
Roulé de dinde (portion : 55g)	101mg	14%	Salami de boeuf cuit (portion : 55g)	62mg	9%
Saucisse fumée (portion : 55g)	94mg	<u>1</u> 3%	Cervelas (portion: 55g)	61mg	9%
Pain de viande au poivre (portion : 55g)	94mg	<u>13%</u>	Saucisse porc et boeuf (portion : 55g)	59mg	
Boeuf froid tranché (fin) (portion: 55g)	92mg	13%	Saucisse fumée (poulet) (portion : 55g)	59mg	
Braunschweiger (portion: 55g)	92mg	13%	Saucisson de bière (portion : 55g)	57mg	
Saucisse fumée (porc) (portion : 55g)	89mg	13%		54mg	
Saucisse fumée (boeuf) (portion : 55g)	88mg	<u>13%</u>	Saucisse knackwurst (portion : 55g)		
Blanc de dinde rôtie (portion : 55g)	87mg	12%	Saucisse de bière (boeuf) (portion : 55g)	53mg	
Jambon haché (portion : 55g)	86mg	12%	Mortadelle (portion: 55g)	53mg	
Jambon tranché (portion : 55g)	84mg	12%	Saucisse de bologne (boeuf) (portion : 55g)	48mg	
Chorizo (portion: 55g)	83mg	12%	Rôti de viande froid (portion : 55g)	47mg	7%
Saucisse de veau (portion : 55g)	83mg	12%	Salami de boeuf sec (portion : 30g)	43mg	6%
Saucisse bratwurst (portion: 55g)	82mg	12%	Fromage de tête (portion : 55g)	32mg	5%
Saucisse de boeuf (portion : 55g)	78mg	112	Boudin (portion : 55g)	12mg	2%
Saucisson de bologne (portion : 55g)	76mg	112			
Saucisson de bière (porc et boeuf) (portion : 55g)	74mg	112			
Saucisson de bologne (dinde) (portion : 55g)	72mg	<u>1</u> 0%			•

Phosphates ajoutés

- Augmente la durée de conservation
- Augmente la quantité d'eau retenue dans la viande « plus gouteuse » (augmente le poids ... 10 à 15%)
- Maintien une couleur « naturelle »
- Disodium-phosphate,polyphosphate(s), pyrophosphate(s)

Triphosphates				
N°	Descriptif			
E 451 I	Triphosphate pentasodique			
E 451 II	Triphosphate pentapotassique			
E 452 I	Polyphosphates sodiques			
E 452 II	Polyphosphates potassiques			
E 452 III	Polyphosphates calco-sodiques			
E 452 IV	Polyphosphates calciques			
E 459	Béta-cyclodextrine			

Phosphates ajoutés

- Sodas, colas, fanta,...
- Coca-Cola: +30% d'acide phosphorique en 2005
- Coca-Cola 170 mg/L
- Coca-Cola light 70 mg/L
- Barres chocolatées (Mars, Nuts,...)
- Nutella
- Fromages fondus, crèmes de gruyère
- Riz incollable

En résumé

	VL	.PD	F	D
	Baseline	6 months	Baseline	6 months
Body weight, kg	67.5 ± 10.2	67.1 ± 11.0	65.1 ± 7.3	65.6 ± 7.3
GFR, ml/min/1.73 m ²	17.1 ± 5.5	17.8 ± 6.6	17.6 ± 5.3	16.1 ± 5.8
Urea, mg/dl	146±39	48 ± 19 ^{a,o}	160 ± 37	165 ± 34
Albumin, g/dl	3.9 ± 0.4	3.9 ± 0.4	3.9 ± 0.4	4.0 ± 0.3
Hemoglobin, g/dl	11.6 ± 0.8	11.5 ± 0.8	11.5 ± 1.2	11.3 ± 1.0
TC, mg/dl	223 ± 36	169 ± 26 ^{a,b}	214±39	217 ± 36
TG, mg/dl	170 ± 40	$140 \pm 28^{a,b}$	170±38	217 ± 36
CaxP, mg ² /dl ²	41 ± 10	31 ± 8 ^{b,c}	38±5	39±5
PTH, pg/ml	175 ± 115	$109 \pm 73^{a,d}$	190±72	189 ± 82
UK, mEq/day	52 ± 17	51 ± 17	48 ± 14	49 ± 15
Proteinuria, g/day	1.34 ± 1.2	0.87 ± 0.8^{a}	0.79 ± 0.9	0.86 ± 0.7

Tout est là!

Conclusion

- Protéger ses reins malades impose:
 - o De diminuer les protéines animales
 - De maintenir les apports caloriques
 - o D'apprendre une diététique spécialisée
- Ce qui permet de:
 - o Réduire de nombreuses anomalies hormonales
 - Réduire le nombre de médicaments
 - o Contrôler la protéinurie et l'urémie
 - o Retarder le début des dialyses
- Seulement la moitié à 2/3 des patients suivent ces conseils

Merci pour votre attention

